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Application of neural networks for controlling and predicting 
quality parameters in beer fermentation 
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The biochemical pathways involved in the production of ethyl caproate, a secondary product of the beer fermentation 
process, are not well established. Hence, there are no phenomenological models available to control and predict 
the production of this particular compound as with other related products. In this work, neural networks have been 
used to fit experimental results with constant and variable pH, giving a good fit of laboratory and industrial scale 
data. The results at constant pH were also used to predict results at variable pH. Finally, the application of neural 
networks obtained from laboratory experiments gave excellent predictions of results in industrial breweries and so 
could be used in the control of industrial operations. The input pattern to the neural network included the accumu- 
lated fermentation time, cell dry weight, consumption of sugars and aminoacids and, in some cases, the pH. The 
output from the neural network was an estimation of quantity of the ethyl caproate ester. 
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Introduction 

In order to obtain satisfactory industrial process perform- 
ance, the maintenance of operating conditions at designed 
values is required. Because of unpredictable disturbances 
which invariably enter a process and also as a result of 
chemical changes within the process, control action is usu- 
ally required if the specified conditions are to be main- 
tained. Sometimes it is possible to improve bioreactor per- 
formances by varying process conditions such as 
temperature or pH in a predetermined manner while the 
reaction is taking place. 

Two approaches to a fermentation control system can be 
considered: one mechanistically based, where the metab- 
olism of the product needs to be known perfectly, and the 
other that implies treatment of the data in a statistical way. 
In our case, the latter has been the one considered although 
some available biochemical information was also con- 
sidered. From another point of view, two different major 
types of control, static and dynamic, are usually considered 
[15] and among the latter, two new types can be considered: 
predictive and on-line dynamic. The predictive type needs 
some initial data in order to predict the evolution of the 
process. The on-line dynamic model requires continuous 
measurement of some of the properties of the process in 
order to be related to a controllable magnitude. This type 
of control means that the process can be studied continu- 
ously and therefore can be modified at any time. In our 
case, the pH could be the data to be monitored continu- 
ously. 

Neural networks theory developed in the 1950s and is 
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now one of the most active fields within the domain of 
artificial intelligence. Neural networks have a number of 
applications such as control of processes [7,11], interpret- 
ation of sensors, dynamic models and robotics. There are 
some examples of the application of neural networks tech- 
nology to the modelling of the dynamics of biological pro- 
cess and of the evolution of fermentation variables [16-18]. 
In this sense, Thibanlt et al [17] studied the biomass and 
substrate evolution in a fermentation tank as did Zhang et 
al [18], while Simutis et al [16] applied the neural network 
to another specific example: alcohol production during 
industrial beer production. Lately, Glassey et al presented 
their results working with an industrial recombinant fer- 
mentation [6]. 

In a previous work [3], we successfully predicted the 
production of certain esters in industrial beer fermentation 
by Saccharomyces carlsbergensis. Ester production was 
analysed using knowledge of the metabolic pathway to 
establish a kinetic model at different constant temperature 
and pH values, and to predict results in an experiment with 
freely changing pH. However, in the case of ethyl caproate, 
which is produced in small amounts but of interest because 
of its flavour in the beverage [1], no kinetic equation was 
obtained because the metabolic pathway is not well known, 
and prediction was not possible. The advantage of 
employing neural networks lies in the fact that, without 
having exhaustive knowledge of the processes involved, the 
network can learn from previous experiences in order to 
predict the system behaviour when some variables are 
modified. 

In this work, the essential characteristics of neural net- 
works will be introduced, to go on to build up the network 
with the adequate structure for analysing ethyl caproate 
production during the beer fermentation process at labora- 
tory scale. A similar study was later carried out for exper- 
iments at variable pH, this being included as an input para- 
meter of the network and predictions for the constant pH 
networks are compared with the variable pH experiments. 
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Finally, the neural network fitted with laboratory scale 
experiments at variable pHs was applied to the prediction 
of industrial brewery fermentations and compared with the 
brewery results. It is worth pointing out the necessity of 
developing evaluation processes, such as these neural net- 
works, for their application in control systems and indus- 
trial predictions. The design of a neural network for con- 
trolling and predicting the evolution of the desired products 
is a valid option in the elaboration of a model for the 
microbiological process which can be applied at an indus- 
trial level. 

Control considerations 

i) The problem statement 
Beer fermentation is a process in which a great number of 
secondary products are obtained. Among these, diacetyl, 
fusel alcohols and esters are of great importance, decisively 
influencing the final flavour of the beer. The main factors 
affecting beer fermentation are the strain of yeast employed 
and the wort characteristics (mainly fermentable sugars and 
aminoacids). Such parameters as pH, temperature and even 
agitation must also be considered, because, depending on 
their initial values and evolution, the final concentration of 
these compounds will be quite different. 

If  the metabolic pathways of these compounds are 
known, it is possible, in conjunction with the experimental 
data on nutrient consumption and product formation, to 
obtain kinetic models at different constant temperature and 
pH values that allow us to control and to predict their 
behaviour during the beer fermentation process. This has 
been previously done at laboratory and industrial scales [3- 
5]. However, when the metabolic pathway of production 
for a compound is not well known, it is not possible to 
work in this way. This is exactly the case for ethyl caproate, 
and so neural networks technology offers a way of working 
out its control and predicting its production. 

ii) Description and elaboration of a neural network 
A neural network is formed by a number of layers of inter- 
connected units: the neurons. The first layer is made up of 
as many input variables as exist in the process to be simu- 
lated, adding an additional neuron with a constant input, 
the usually denominated bias [12]. If we indicate the input 
in the k th n e u r o n  of the first layer a s  i lk ,  the data are trans- 
ferred, by linear connections with weights Wjk, to the next 
layer of neurons, so that the input to the jth of the second 

layer will be: i 2 = 2Wjkik 1. 
k 

In this work, neural networks of three layers are con- 
sidered, which is usual for this type of application [6,16- 
17]. The second layer being known as the hidden layer and 
the third corresponding to the variable outputs. The inputs 
to the second and the third layers are processed by a sig- 
moidal function type, so the outputs of the second layer 
will be written as: o 2 = 1/[1 + exp(-i2)] .  These outputs 
are once more linearly combined with weights ~vij and are 
finally processed by the last layer, thus obtaining the values 
of the output variables generated by the net, o3i. These 
values will depend on the weights assigned to the connec- 
tions. 

The selection of the input and output variables will 
depend on the process to be simulated; the first to be con- 
sidered being data which are known and easily controlled, 
and the second, data whose prediction is of interest. Of 
course, the fundamental thing is to try to reproduce a real 
process. Therefore, the aim is to obtain, from experimental 
data of the input and output variables achieved in a set of 
experiences, the values of the weights that minimise the 
average quadratic error between the experimental values of 
the output variables, oi, and those generated by the network 
from the experimental data of the corresponding input vari- 

ables, o3i. This error will take a value of ~ (oi - o3) 2 for 
i 

each group of data, it being necessary to add the errors 
achieved in all the experiences made. 

Usually, the minimisation is carried out by employing 
the generalised delta rule [6,9-13]. This method consists of 
the modification of the initially random chosen weights by 
means of a mechanism of retropropagation, using a descent 
gradient method. This technique has been used for chemical 
engineering [7] and for fermentation [17] processes. In our 
case, the method of the conjugate gradient ]2] was chosen, 
because it proves much more efficient [10] when working 
with conventional computers. This technique also offers a 
quicker and safer convergence towards the minimum values 
of the quadratic error. 

As can be seen, this neural network offers a black box 
technique for data fitting: if the weights that minimise the 
error are chosen, afterwards it is possible to make predic- 
tions with these weights about the behaviour of the process 
when the input data are changed, which is a very interesting 
alternative. The experience with neural networks shows that 
the network is able to learn very complicated mechanisms 
in a natural way without requiring knowledge of the struc- 
ture of the model. 

Initially, ethyl caproate production was studied in a lab- 
oratory fermenter at a constant pH. Experiments were car- 
ried out at pH 3.56, 4.00 and 5.02; the following parameters 
being considered as input variables: time, dry weight, sugar 
and aminoacids concentration, while the output variable 
was the concentration of ethyl caproate. A neural network 
was designed for each pH and our networks were formed 
of three layers with five neurones in the first layer, corre- 
sponding to the inputs and to the bias, four neurones in the 
second layer, one of them with a constant input (bias), and 
only one neurone in the third layer, corresponding to the 
ethyl caproate concentration. The resulting neural network 
is shown in Figure 1. 

As there is no clear description in the literature as to how 
many neurones the second layer should contain, after some 
initial trials the most suitable alternative in terms of rapidity 
and effectiveness was chosen. In a second stage in the 
design of a neural network, the pH was included as an input 
variable, the same procedure being followed, except that 
this network has an additional neurone in the first layer, 
corresponding to the pH. 

Material and methods 

The microorganism was a lager production strain of Sacc- 
haromyces cerevisiae provided by the former brewery 'El 
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Figure 1 Neural networks for the beer fermentation process at a con- 
stant pH 

Aguila Negra' in Spain. The yeast cells were cultured in a 
natural wort medium at 12 ~ C (initial conditions; pH = 5.1; 
~ = 11.8). The culture procedures at both laboratory and 
industrial scale were described previously [3-5]. The 
method employed for obtaining the experimental data rela- 
tive to the pH, the microorganism dry weights and the 
sugars and aminoacids content of the work at both scales, 
have also been described [3-5]. 

The culture at a laboratory level was carried out in a 5- 
L laboratory fermenter (New Brunswick Scientific Co, Inc, 
BIOFLO III) with external agitation (150 rpm). The pH was 
kept constant, if required, by automatic addition of 
0.01 mM NaOH. The medium was initially saturated with 
oxygen (9 ppm). Cultures were also carried out in a 
2 • 10S-L (3.5 m in diameter and 18 m in height), indus- 
trial, non-externally agitated, cylindro-conical fermenter. In 
this case the inoculum was added to the fermenter in several 
loads at the same time as the wort. The temperature of fer- 
mentation was in all cases 12 ~ C. 

Ethyl caproate was determined by gas chromatography 
(Perkin-Elmer 8600) equipped with a flame ionisation 
detector as follows: 100-ml samples, previously degassed, 
with an internal standard of n-butanol were kept at 40 ~ C 
for 1 h. A volume of 3 ml of head space was directly 
injected into a Carbowax 1540, 8% chromosorb W-AW- 
HMDS-98-100 column 4 m long and 2 mm in diameter. 
The column temperature was initially 50 ~ C and was then 
raised 4~  min -~ to 120 ~ C. The results presented are 
always the mean of at least three assays. 

The neural network calculations were carried out with a 
PC 486, at 66 MHz. The programs were written in FOR- 
TRAN and optimization routines based in the conjugate 
gradient method [2,8-14] were used to minimize the error 
function. The convergence to the minimum values'of the 
quadratic error was quick and safe in all the cases. 
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Figure 2 Ethyl caproate production at three different pHs (o,i,A), and 
their respective fittings without including the pH as an input variable 
(continuous line) 

mentation, accompanying the production of ethanol (data 
not shown), giving a concentration of 0.043 ppm in one day 
and a half, and reaching values of 0.314 ppm at the end of 
this primary fermentation. This pattern of production is 
equal to that offered by the other esters usually produced 
in beer fermentation, increasing in parallel to the decrease 
observed in the consumption of fermentable sugars and 
aminoacids, the main sources of carbon and nitrogen, 
respectively. 

a. 1) Fitting at constant pH without pH in- 
clusion: The first step was to initiate the connections 
with random weights and to look for the minimum of the 
error function by employing the method of the conjugate 
gradient. For distinct initial weights, a convergence is 
obtained at different local minima. We keep the local min- 
ima which produce a nearly perfect fitting to the experimen- 
tal data, Figure 2, and discard those which give big errors. 
The chosen minima will be used later in the prediction 
(section b.2 below). 

As an example, the weights for pH 4.00 that minimise 
the error are presented in Table 1. In Formula 1, the weights 
for the connections between the first and the second layer 
appears as a matrix, while Formula 2 indicates the corre- 
sponding weights between the second and the third layer. 

a.2) Fitting at constant pH including this as an 
input: The design of a neural network, incorporating 
the pH as an input variable, was also carried out. This net- 
work includes an additional neuron in the first layer and an 
attempt was made to fit all the data obtained at the constant 
pHs of 3.56, 4.00 and 5.02. To summarize, we train this 
neural network with all the data obtained at the different 
constant pHs. The fitting achieved was not as good as that 

Table 1 Weights for pH 4.00 that minimise the error 

Formula 1. 
Results and discussion -0.9939 

-0.4378 
a) Neural networks application in fermentation at 3.2847 
laboratory scale Formula 2. 
When fermentations were carried out in 5-L stirred tanks, -1.8120 
ethyl caproate was produced from the beginning of the fer- 

Wjk 
-0.1072 -0.0048 2.2923 1.4450 

0.3291 - 1.2872 -0 .2584  -0.0034 
1.1856 -0.1010 2.5868 1.5846 

-0.0042 4.8955 -5.6030 
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Figure 3 Ethyl caproate production at three different pHs (o,m,&) and 
their respective fittings including the pH as an input variable 
(continuous line) 

obtained in a.1, when a single network is considered for 
each pH, since all the data now have to be reproduced by 
a single network. In this case, 22 connections among neu- 
rons were achieved instead of the 19 previously obtained. 
The fitting of the data obtained with this neural network is 
presented in Figure 3. 

b) Predictions of laboratory experiments at variable 
pH 
It must be taken in account that when the pH is allowed to 
evolve freely, some physiological changes will appear 
which will add major complications to the predictions. 
Nevertheless, experiments at a variable pH had been pre- 
viously carried out [3-5] and the results obtained have now 
been used in this work for testing the possible application 
to the prediction of a beer laboratory fermentation at a vari- 
able pH. 

b. 1) Prediction using the neural network including pH 
as an input: The experimental pH values were intro- 
duced in the neural network obtained in a.2 and this was 
then used to simulate ethyl caproate evolution. The single 
neural network was built by taking all the experimental lab- 
oratory data at the three different pHs assayed and after- 
wards, in order to make the prediction, all the data at vari- 
able pHs were introduced to the neural network. In Figure 
4, pH evolution is shown together with the predicted and 
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Figure 4 Ethyl caproate production (o) at variable pH, and the corre- 
sponding prediction from the neural network considering the pH as an 
input variable (continuous line), pH evolution is also shown 
(discontinuous line) 

experimental laboratory data for ethyl caproate; a reason- 
ably good fit was obtained. 

When trying to predict experimental results, the problem 
arises that different local minima give rise to a similar fit- 
ting with very similar errors, producing different predic- 
tions at variable pHs. Some predictions, such as those pre- 
sented in Figure 4, are quite good, while others are not as 
good. Thus, many data are needed for training the network 
and selecting a priori the most adequate weights in order 
to make the prediction. This last simulation presented was 
accomplished by introducing different pH values at each 
time, but less information will be needed if an acceptable 
prediction could be achieved using a neural network with 
constant pH, as indicated in the next section. 

b.2) Prediction at variable pH using the networks at 
constant pH: An attempt was made to reproduce the 
results obtained at a variable pH using the networks 
designed for constant pHs. The prediction of experimental 
results, changing the operation conditions used in the fitted 
networks, is not the usual application of the neural net- 
works. With this in mind, experiments at a variable pH 
were also carried out [3-5] and the results of section a.1 
were used to test the possible application of constant pH 
experiments for the prediction of a beer laboratory fermen- 
tation at a variable pH. The experimental results of ethyl 
caproate evolution in laboratory fermenters when the pH 
was not fixed and the predictions achieved using the neural 
networks of the different fermentations at the distinct con- 
stant pHs are shown in Figure 5. 

Taking into account changes in pH with time, predictions 
at a constant pH of 5.02 are compared with the data for 
ethyl caproate obtained at the beginning of the process and 
predictions at pH 3.56 with the data at the end. Predictions 
achieved at pH 4.00 are presented all through the process. 
The excellent agreement achieved between the predictions 
obtained with the neuronal network at pH 4.00 and the 
experimental data at a variable pH is noteworthy, parti- 
cularly at the end of the process and, globally, follows the 
tendency of ethyl caproate evolution, even though a con- 
siderable error is obtained at intermediate times. This 
accord is common with different weights that provide very 
similar local minima. 
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Figure 5 The production of ethyl caproate (o) at variable pH, and the 
three corresponding predictions from the neural networks considering 
three different constant pHs 



c) Analysis for the control at industrial scale 
It is important to evaluate the possibility of using the exper- 
imental data obtained in fermentations at a laboratory level 
for the elaboration of neural networks able to predict 
adequately the results obtained in industrial breweries. In 
order to do this, industrial fermentations have been carried 
out and the results analysed. The shape of the curve that 
can be plotted from the experimental results (Figure 6) is 
quite similar to that obtained in previous laboratory exper- 
iments, although a delay of two days was found in the 
industrial bioreactor. Thus, the final values of 0.300 ppm 
of ethyl caproate were reached on the 8th day of the fer- 
mentation instead of on the 6th as happened with the lab- 
oratory conditions. This delay has been attributed mainly 
to loading strategies in the industrial plant and to the 
absence of agitation that happens in the industrial fermenter 
at the beginning of the process [3-5]. 

c. 1) Fitting at industrial scale: The design of a neural 
network, incorporating pH as an input variable, in the same 
way as described previously for the laboratory scale, has 
been carried out for ethyl caproate during a fermentation 
process in a 2 x 105-L industrial bioreactor. The same 
initial conditions as in previous laboratory experiments 
were employed+ and the pH value was of course not fixed. 
The fitting of the data obtained at an industrial scale to this 
new neural network is also presented in Figure 6; an excel- 
lent fit was achieved. 

c.2)Prediction using the networks at laboratory 
scale: The prediction of this beer fermentation process 
at an industrial scale from data obtained at a laboratory 
scale and at variable pH is of great interest. The prediction 
initially obtained for the evolution of ethyl caproate carried 
out in this way using the experimental laboratory data, was 
not satisfactory at all because the existing delay observed 
between both fermentations had not been taken into 
account. Therefore, two days were added to the laboratory 
data in order to carry out the prediction. The resulting pre- 
diction achieved is presented in Figure 6, and the fit was 
very good for most of the process. The results presented 
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Figure 6 Ethyl caproate production at an industrial level ( i ,)  at variable 
pH, and the corresponding specific neural network fitting (soIid line). The 
discontinuous line corresponds to the prediction based on the neural net- 
work elaborated from the laboratory experimental data at variable pH 
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here are encouraging since they allow us to make consistent 
predictions based on previously-designed neural networks. 

Final remarks 

In this work, we have dealt with the application of the neu- 
ral networks technique to the control and prediction of a 
fermentation process such as beer production for which a 
detailed mechanistic mathematical model was not available 
due to the complexity of the reactions involved. Neural net- 
works have proved to be a good substitute for the phenom- 
enological models when fitting the evolution of ethyl capro- 
ate to the experimental results obtained during the beer 
fermentation process, at both laboratory and industrial 
scales, and therefore may be applied in the control process, 
both at constant and at variable pH, with or without pH as 
an input parameter. 

When experimental data, obtained at laboratory level and 
at variable pH, were used to predict these data using the 
networks at constant pH, the results achieved were quite 
good. The difficulty that appears when using this approach 
must be taken in account, which is mainly due to physio- 
logical changes that the yeast cells will undergo when incu- 
bated at constant or varying pH. This will affect the predic- 
tions of the experimental results obtained at variable pH 
when the neural networks were designed using experiments 
at constant pH. 

Finally, free pH experimental data obtained at a labora- 
tory level (5-L stirred tank) were used to achieve suitable 
neural networks to be employed in the control of industrial 
fermentations (2 • 105-L tank). In this case, and due to 
the two-day step-by-step way of loading of these industrial 
fermenters which means a low initial level of agitation, a 
delay time must be introduced with respect to the laboratory 
process. When this delay time is considered, an even better 
prediction for the industrial process than that previously 
obtained at the laboratory level is achieved, although in that 
case the prediction was made based on neural networks 
built using constant pHs. 
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